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Abstract Janus kinase-3 (JAK3) fosters proliferation and
counteracts apoptosis of lymphocytes and tumor cells. The
gain of function mutation “*"?YJAK3 has been discovered
in acute megakaryoplastic leukemia. JAK3 is inactivated
by replacement of lysine by alanine in the catalytic subunit
(®835AJAK3). Regulation of cell proliferation and apoptosis
involves altered activity of CI™ channels. The present
study, thus, explored whether JAK3 modifies the function
of the small conductance Cl~ channel CIC-2. To this end,
CIC-2 was expressed in Xenopus oocytes with or without
wild-type JAK3, A*8VJAK3 or ®¥¥5'AJAK3, and the CI~
channel activity determined by dual-electrode voltage
clamp. Channel protein abundance in the cell membrane
was determined utilizing chemiluminescence. As a result,
expression of CIC-2 was followed by a marked increase of
cell membrane conductance. The conductance was signif-
icantly decreased following coexpression of JAK3 or
ASBVIAK3, but not by coexpression of FB'AJAKS.
Exposure of the oocytes expressing CIC-2 together with
AS68VIAK3 to the JAK3 inhibitor WHI-P154 (4-[(3’-
bromo-4’-hydroxyphenyl)amino]-6,7-dimethoxyquinazo-
line, 22 pM) increased the conductance. Coexpression of
AS68VIAK3 decreased the CIC-2 protein abundance in the
cell membrane of CIC-2 expressing oocytes. The decline of
conductance in CIC-2 and ****VJAK3 coexpressing oocytes
following inhibition of channel protein insertion by brefeldin
A (5 pM) was similar in oocytes expressing CIC-2 with
AS8VIAK3 and oocytes expressing CIC-2 alone, indicating
that “***VJAK3 might slow channel protein insertion into

J. Warsi - B. Elvira - Z. Hosseinzadeh - E. Shumilina -
F. Lang (D<)

Department of Physiology I, University of Tiibingen,
Gmelinstr. 5, 72076 Tiibingen, Germany

e-mail: florian.lang @uni-tuebingen.de

rather than accelerating channel protein retrieval from the
cell membrane. In conclusion, JAK3 downregulates CIC-2
activity and thus counteracts ClI~ exit—an effect possibly
influencing cell proliferation and apoptosis.
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Introduction

Janus kinase 3 (JAK3), a tyrosine kinase contributing to the
signaling of hematopoietic cell cytokine receptors (Cornejo
et al. 2009; Imada and Leonard 2000; Ghoreschi et al.
2009; O’Shea et al. 2002; Shuai and Liu 2003), fosters cell
proliferation and counteracts apoptosis of lymphocytes and
tumor cells (de Totero et al. 2008; Fainstein et al. 2008;
Nakayama et al. 2009; Kim et al. 2010; Uckun et al. 2007).
The gain of function JAK3 mutation **’?YJAK3 has been
discovered in acute megakaryoplastic leukemia (Malinge
et al. 2008; Walters et al. 2006). JAK3 is inactivated by
replacement of the ATP coordinating lysine by alanine in
the catalytic subunit (“*>>*JAK3) (Haan et al. 2011).

Cell proliferation critically depends on the activity of
ion channels including Cl™~ channels (Lang et al. 2007).
Activation of C1™ channels results in cell shrinkage, which
is decisive for the triggering of oscillations of cytosolic
Ca”* activity (Ritter et al. 1993). Anion channels involved
in cell volume regulatory decrease (Furukawa et al. 1998;
Grunder et al. 1992; Thiemann et al. 1992) include the
ubiquitously expressed and highly conserved inwardly
rectifying CI™ channel CIC-2 (Jentsch et al. 1995; Thie-
mann et al. 1992). Cell shrinkage inhibits CI~ channels,
thus decreasing cellular C1™ loss (Lang et al. 1998; Macri
et al. 1997). ClI” channels are typically activated during
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apoptosis (Elinder et al. 2005; Lang et al. 2006; Myssina
et al. 2004; Okada and Maeno 2001; Okada et al. 2004;
Porcelli et al. 2004; Shimizu et al. 2004; Souktani et al.
2000; Szabo et al. 1998; Wei et al. 2004; Zuo et al. 2009).

The present study explored, whether JAK3 participates
in the regulation of CIC-2. To this end, CIC-2 was
expressed in Xenopus oocytes with or without wild-type
JAK3, active “**VJAK3 or inactive “**'*JAK3. CIC-2
induced currents were determined utilizing dual-electrode
voltage clamp and CIC-2 protein abundance in the cell
membrane estimated from chemiluminescence. As a result,
coexpression of JAK3 and of active “***VJAK3 but not
coexpression of *>'AJAK3 decreased CIC-2 induced
conductance in CIC-2-expressing Xenopus oocytes. Fur-
thermore, coexpression of active AS68VIAK3 diminished
CIC-2 protein abundance in CIC-2-expressing Xenopus
oocytes.

Materials and Methods
Constructs

For generation of cRNA, cDNA constructs encoding
wild-type human CIC-2 (Pusch et al. 1999; Kowalczuk
et al. 2008; Stegen et al. 2000) and rat hemagglutinin
(HA)-tagged CIC-2 (Hosseinzadeh et al. 2012b), as well
as wild-type mouse JAK3, inactive ¥®**'AJAK3 mutant,
and the gain of function *>**VJAK3 mutant (Warsi et al.
2013), were used. The cRNA was generated as described
previously (Hosseinzadeh et al. 2013b; Broer et al.
1994).

Voltage Clamp in Xenopus oocytes

Xenopus oocytes were prepared as previously described
(Munoz et al. 2013; Shojaiefard et al. 2012). The oocytes
were injected with 15 ng cRNA encoding wild-type CIC-2
or CIC-2-HA, as well as wild-type JAK3 cRNA or
ASBVIAKS or ®*>'AJAK3 cRNA (10 ng) on the first day
after preparation of the oocytes (Hosseinzadeh et al. 2013a;
Almilaji et al. 2013a). The oocytes were maintained at
17°C in ND96 solution containing (in mM): 88.5 NaCl, 2
KCl, 1 MgCl1,, 1.8 CaCl,, 2.5 NaOH, 5 HEPES, and 5
Sodium Pyruvate (C3H3NaO3) (pH 7.4). The ND96 solu-
tion was supplemented with 100 mg/l gentamycin, 50 mg/l
Tetracycline, 1.6 mg/l Ciprofloxacin, and 90 mg/l The-
ophylline; and, where indicated, with JAK3 inhibitor WHI-
P154 (4-[(3’-bromo-4’-hydroxyphenyl)amino]-6,7-dimeth-
oxyquinazoline, 22 uM final concentration) or brefeldin A
(5 UM final concentration). Experiments were performed at
room temperature 3 days after injection. The currents were
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determined in two-electrode voltage clamp utilizing a pulse
protocol of 10 s pulses from —140 to +40 mV in 20 mV
increments. The intermediate holding voltage was
—60 mV. The current at the end of each voltage step was
taken for data analysis (Hosseinzadeh et al. 2012a; Ales-
utan et al. 2012). The data were filtered at 2 kHz, and
recorded with a DigiData 1300 A/D-D/A converter and the
pClamp 9.0 software for data acquisition and analysis
(Axon Instruments, USA) (Pathare et al. 2012a; Pathare
et al. 2012b). The bath solution ND96 was used for the
experiments (Mia et al. 2012). The flow rate of the
superfusion was 20 ml/min, and a complete exchange of
the bath solution was reached within about 10 s (Almilaji
et al. 2013b; Bogatikov et al. 2012).

Detection of CIC-2 Cell Surface Expression
by Chemiluminescence

To determine CIC-2 cell surface expression by chemi-
luminescence, defolliculated oocytes were injected with
water or 15 ng cRNA encoding CIC-2-HA, which con-
tains an inserted HA epitope (Pakladok et al. 2013), with
or without 10 ng cRNA encoding “3*VJAK3. Oocytes
were incubated with mouse monoclonal anti-HA anti-
body conjugated to Horseradish Peroxidase (1:1,000,
Miltenyi Biotec Inc, CA, USA) for 1 h. After staining,
individual oocytes were placed in 96-well plates with 20
pL of SuperSignal ELISA Femto Maximum Sensitivity
Substrate (Pierce, Rockford, IL, USA); and chemilumi-
nescence of single oocytes was quantified in a lumino-
meter (Walter Wallac 2 plate reader, Perkin Elmer,
Juegesheim, Germany) by integrating the signal over a
period of 1 s. The results of the experiments are given as
normalized relative light units (Pakladok et al. 2012).

Statistical Analysis

Data are provided as means = SEM, n represents the
number of oocytes investigated. All experiments were
repeated with at least 2-3 batches of oocytes; in all repe-
titions qualitatively similar data were obtained. Data were
tested for significance using ANOVA or ¢ test, as appro-
priate. Results with p < 0.05 were considered statistically
significant.

Results

The present study explored the effect of Janus kinase 3
(JAK3) on the activity of CIC-2 C1™ channels. To this end,
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Fig. 1 Coexpression of JAK3 decreases Cl~ conductance in CIC-2-
expressing Xenopus oocytes A: Representative original tracings
showing currents in Xenopus oocytes injected with DEPC water (a),
as well as in oocytes expressing CIC-2 without (b) or with additional
coexpression of wild-type JAK3 (c) B: Arithmetic means + SEM
(n = 20-21) of the current (I) as a function of the potential difference
across the cell membrane (V) in Xenopus oocytes injected with water
(DEPC water, gray triangles), expressing CIC-2 alone (CIC-2, white

cRNA encoding CIC-2 was injected into Xenopus oocytes
with or without additional injection of cRNA encoding
JAK3 and the cell membrane conductance was determined
utilizing dual-electrode voltage clamp. In water-injected
oocytes, the cell membrane conductance was low (Fig. 1).
As shown earlier (Hosseinzadeh et al. 2012b), expression
of CIC-2 resulted in a marked increase of cell membrane
conductance. As shown in Fig. 1, additional expression of
wild-type JAK3 was followed by a significant decrease of
the current in CIC-2-expressing oocytes.

The effects of wild-type JAK3 were mimicked by the
constitutively active mutant “>**VJAK3. Coexpression of
ASBVIAK3 significantly decreased Cl1~ channel activity in
CIC-2-expressing oocytes. In Xenopus oocytes expressing
CIC-2 together with AS68VIAK3, the conductance was
significantly lower than in Xenopus oocytes expressing
CIC-2 alone (Fig. 2). In contrast, CIC-2 activity was not
significantly modified by the inactive mutant *83'AJAK3
(Fig. 2).

Pharmacological inhibition of JAK3 with JAK3 inhibi-
tor WHI-P154—4-[(3’-bromo-4’-hydroxyphenyl)amino]-
6,7-dimethoxyquinazoline (22 pM) reversed the effect of
ASS8VIAK3. As illustrated in Fig. 3, the C1™~ current in CIC-

8-

Conductance (uS)
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circles) or expressing CIC-2 together with wild-type JAK3 (CIC-
2 + JAK3, black circles) C: Arithmetic means + SEM (n = 20-21)
of the conductance calculated by linear fit of I/V curves shown in
B between —140 and —80 mV in Xenopus oocytes injected with
water (DEPC water, dotted bar), expressing CIC-2 alone (CIC-2,
white bar) or expressing CIC-2 together with wild-type JAK3 (CIC-
2 + JAK3, black bar) ***(p < 0.001) indicates statistically signifi-
cant difference to expression of CIC-2 alone

2- and *%VJAK3-expressing Xenopus oocytes was sig-
nificantly increased following treatment with the JAK3
inhibitor WHI-P154 (22 uM) (Fig. 3).

The downregulation of CIC-2 activity by JAK3 or
AS8VIAK3 may have resulted from an influence of the
kinase on the channel protein abundance in the cell
membrane. Chemiluminescence was, thus, employed to
quantify channel protein abundance in the plasma mem-
brane. As illustrated in Fig. 4, the coexpression of
AS6BVFAK3 was followed by a significant decrease of CIC-
2-HA protein abundance in the Xenopus oocytes cell
membrane (Fig. 4).

JAK3 or **VJAK3 could decrease CIC-2 protein
abundance in the cell membrane either by impeding
channel protein insertion or by accelerating channel protein
retrieval. In order to discriminate between these two pos-
sibilities, CIC-2- and “*®VJAK3-expressing Xenopus
oocytes were treated with 5 pM brefeldin A—a substance
disrupting insertion of new channel protein into the cell
membrane. As illustrated in Fig. 5, the decline of con-
ductance in the presence of brefeldin A was similar in
oocytes expressing CIC-2 together with “7**VJAK3 and
oocytes expressing CIC-2 alone.
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Fig. 2 The effect of wild-type JAK3 is mimicked by active
ASS8VIAK3, but not by inactive *¥3'AJAK3 A: Representative original
tracings showing currents in Xenopus oocytes injected with DEPC
water (a) or expressing CIC-2 alone (b) or expressing CIC-2 together
with constitutively active AS68VIAK3 (c) or inactive ®¥1AJAK3 (d) B:
Arithmetic means &= SEM (n = 17-44) of the current (I) as a
function of the potential difference across the cell membrane (V) in
Xenopus oocytes injected with water (DEPC water, gray triangles),
expressing CIC-2 alone (CIC-2, white circles) or expressing CIC-2
together with constitutively active “>8VJAK3 (black circles) or with

Discussion

The present observations reveal a novel mechanism in the
regulation of the Cl~ channel CIC-2. Janus kinase 3
decreases the CIC-2 protein abundance in the cell mem-
brane and thus Cl™ channel activity. The experiments with
brefeldin A are suggestive for an effect of JAK3 on channel
protein insertion into rather than channel protein retrieval
from the cell membrane.

The effect of JAK3 on CIC-2 may impact on cell vol-
ume, as inhibition of C1~ channels curtails ClI~ exit—thus
fostering hyperpolarization of the cell membrane and
decreasing K™ exit with osmotically obliged water. Cell
shrinkage leads to inhibition of cell volume regulatory CI1™~
channels (Lang et al. 1998; Macri et al. 1997). CIC-2 has
been shown to be sensitive to cell volume (Grunder et al.
1992). At least in theory, JAK3 may participate in the
regulation of the channel following cell shrinkage.

Activation of Cl~ channels is further involved in the
regulation of apoptosis (Elinder et al. 2005; Lang et al.
2006; Myssina et al. 2004; Okada and Maeno 2001;
Okada et al. 2004; Porcelli et al. 2004; Shimizu et al.
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inactive ***'AJAK3 (light gray circles) C: Arithmetic means -+ SEM
(n = 17-44) of the conductance calculated by linear fit of I/V curves
shown in B between —140 and —80 mV in Xenopus oocytes injected
with water (DEPC water, white bar), expressing CIC-2 alone (CIC-2,
white bar) or expressing CIC-2 together with constitutively active
ASG8VIAK3 (CIC-2 + “°8VJAK3, black bar) or with inactive
K8SIAJAK3 (CIC-2 + X85'AJAK3, light gray bar). *** (p < 0.001)
indicates statistically significant difference to expression of CIC-2
alone

2004; Souktani et al. 2000; Szabo et al. 1998; Wei et al.
2004; Zuo et al. 2009). The inhibitory effect of JAK3 on
CIC-2 could, thus, participate in the antiapoptotic effect
of the kinase (de Totero et al. 2008; Fainstein et al. 2008;
Kim et al. 2010; Nakayama et al. 2009; Uckun et al.
2007).

CIC-2 participates in the regulation of several further
functions, such as intracellular chloride concentration and
thus cell membrane potential of neurons (Staley et al.
1996), survival of male germ cells and photoreceptors
(Bosl et al. 2001), as well as pulmonary chloride and water
secretion, which is a prerequisite for fetal lung develop-
ment (Blaisdell et al. 2000). Whether or not the respective
cells do express JAK3 and are thus sensitive to regulation
by this kinase remains to be shown.

In conclusion, JAK3 is a powerful kinase inhibiting the
cell volume regulatory Cl- channel CIC-2. In JAK3-
expressing cells, the kinase may thus participate in the
regulation of cell volume and apoptosis. At least in theory,
downregulation of CIC-2 and/or similar C1™ channels may
confer resistance to apoptosis and may thus contribute to
the neoplastic effects of the “7**VJAK3 mutation.
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Fig. 3 The effect of ~>*VJAK3 is reversed by JAK3 inhibitor WHI-
P154 A: Representative original tracings showing currents in Xenopus
oocytes injected with water (a), CIC-2 alone (b), or coexpressing CIC-
2 with constitutive active *3*8VJAK3 without (c) and with (d) a prior
treatment with JAK3 inhibitor WHI-P154 (22 uM) for 24 h B:
Arithmetic means &= SEM (n = 10-22) of current (I) as a function of
the potential difference across the cell membrane (V) in Xenopus
oocytes injected with water (DEPC water, gray triangles), expressing
CIC-2 alone (CIC-2, white circles) or expressing CIC-2 together with
constitutively active *>**VJAK3 and incubated for 24 h in the absence
(CIC-2 + A%8VJAKB, black circles) or presence of the JAK3
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Fig. 4 Effect of ~*¥VJAK3 on surface CIC-2 protein abundance in
CIC-2-HA-expressing Xenopus oocytes Arithmetic means = SEM
(n = 82-98) of the chemiluminescence in Xenopus oocytes injected
with water (DEPC water, gray bar), expressing CIC-2-HA alone
(CIC-2, white bar), or expressing CIC-2-HA together with constitu-
tively active “3¥VJAK3 (CIC-2 4+ *VJAK3, black  bar).
** (p < 0.001) indicates statistically significant difference to expres-
sion of CIC-2 alone

inhibitor WHI-P154 (22 uM) (CIC-2 + *8VJAK3 + WHI-P154,
light gray circles) C: Arithmetic means & SEM (n = 10-22) of the
conductance calculated by linear fit of I/V curves shown in B between
—140 and —80 mV in Xenopus oocytes injected with water (DEPC
water, gray bar), expressing CIC-2 alone (CIC-2, white bar) or
expressing CIC-2 together with ~>*®VJAK3 and incubated for 24 h in
the absence (CIC-2 + ASSVIAKS, black bar) or presence of WHI-
P154 (22 pM, CIC-2 + *38VJAK3 + WHI-P154, light gray bar).
** (p < 0.01) indicates statistically significant difference from CIC-2
(i.e., in the absence of JAK3). # (p < 0.05) indicates statistically
significant difference from the absence of JAK3 inhibitor WHI-P154
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Fig. 5 Effect of brefeldin A on CIC-2 channel activity with or
without coexpression of “3**VJAK3. Arithmetic means + SEM
(n = 8-17) of conductance calculated by linear fit of the respective
I/V curves between —140 and —80 mV in Xenopus oocytes injected
with CIC-2 alone (CIC-2, white bars) or expressing CIC-2 together
with A38VJAK3 (CIC-2 + “38VJAK3, black bars) prior to (left bars)
and following incubation with brefeldin A (5 utM) for 16 h (16 h) or
24 h (24 h). ** (p < 0.01) indicates statistically significant difference
from expression of CIC-2 alone, ### (p < 0.001) indicates statisti-
cally significant difference from the respective value prior to brefeldin
A treatment
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